Как определить угол дифракции?



Максимум второго порядка при освещении дифракционной решетки монохроматическим светом наблюдается под углом 16,4ͦ. Чему равен угол дифракции для максимума, соответствующему максимальному порядку образующегося спектра?

Решение.

Из формулы дифракционной решетки dsinj1 = m1l найдем период решетки d = m1l/dsinj1 , где m1 = 2, j1 = 16,4ͦ.
Максимальный порядок дифракционного спектра будет равен ближайшему целому числу при j = 90ͦ. (смотрите тут)
mmax = d/l = m1l/sinj1l = m1/sinj1 = 2/sin16,4ͦ = 7,1.
mmax – целое число. Поэтому mmax = 7. Угол дифракции j2 находим следующим образом:
dsinj2 = mmaxl или m1l•sinj2/sinj1 = mmaxl;
sinj2 = mmaxsinj1/m1 = 7sin16,4ͦ/2 = 0,988;
j2 = arcsin0,988 ≈ 81ͦ.

Ответ: угол дифракции для максимума равен 81ͦ.

Источник: Пособие-репетитор для подготовки к централизованному тестированию. С.Н.Капельян, Л.А.Аксенович.

0 комментариев :

Отправить комментарий